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Introduction:  The Murray formation is predomi-

nantly composed of lacustrine mudstone that forms the 

basal layer of Aeolis Mons (informally Mt. Sharp) in 

Gale Crater, Mars. The Murray formation has distinct 

iron and sulfur mineralogical variation within its stratig-

raphy detectable by the Chemistry Mineralogy (Che-

Min) instrument consisting of magnetite/hematite in the 

lower Murray and higher hematite, CaSO4, and smectite 

content in the upper Murray (Fig. 1) [1,2,3]. The objec-

tives of this work were evaluate the Sample Analysis at 

Mars Evolved Gas Analyzer (SAM-EGA) data to  1) 

Determine what SAM-EGA detectable phases correlate 

or do not correlate with the Murray mineralogical com-

position detected by CheMin and 2) Utilize Che-

Min/SAM results to propose possible formation scenar-

ios for the observed Murray mudstone mineralogy.   

 
Fig. 1 CheMin-derived Ca-sulfate, Fe-oxide, and phyl-

losilicate abundances for samples from Murray fm. 

Sample elevations indicated  in parentheses. 

  

Materials & Methods: Drilled mudstone samples  

analyzed by SAM and CheMin were acquired along an 

elevation transect (Fig. 1). Analyzed samples were Con-

fidence Hills (CH), Mojave2 (MJ), Telegraph Peak 

(TP), high-silica containing Buckskin (BK), the cross-

stratified, fluvial interval Oudam sample (OU), Ma-

rimba (MB), Quela (QL), Duluth (DU), Stoer (ST) and  

Highfield (HF). All were heated (~35 ˚C min-1) to 

~870˚C where He carrier gas (~0.8 sccm; 25 mbar) 

swept evolved gases from the SAM oven to a quadru-

pole mass spectrometer (QMS) for identification. 

Evolved gases (e.g., SO2, CO2, etc.) released at charac-

teristic temperatures from volatile bearing phases were 

used to identify mineral and/or organic phases [4]. 

Results/Discussions: SO2 - The broad temperature 

(500-825°C) SO2 release in most Murray samples was 

consistent with Fe-sulfate/sulfide and/or Mg-sulfates 

(Fe/Mg-S) (Fig. 2). Some evolved SO2 from CH, MJ, 

TP, MB, QL, and ST was attributed to jarosite that was 

also detected by CheMin [1,2]. Jarosite did not account 

for all of the evolved SO2. The remaining SO2 was con-

sistent with amorphous Fe/Mg-S phases or a mixture of 

crystalline Fe/Mg-S phases below the CheMin detection 

limits. The SO2 release temperatures suggest that OU 

and ST sulfur was dominated by Fe-sulfate/sulfide 

while MB was dominated by Mg-sulfate (Fig. 2).   

The nearly similar SAM- and APXS-SO3 contents in 

CH, MJ, TP, and BK (Fig. 2) indicate that Fe/Mg-S  

dominate the lower Murray S phases. Total S (APXS-

SO3) content in the OU sample and above, however, is 

greater than SAM-SO3 content (Fig. 1) indicating that 

Ca-sulfate dominates S in these samples because CaSO4 

detected by CheMin cannot be detected by SAM [4].  

 
Fig. 2. Evolved SO2 detected by SAM-EGA. wt. % SO3 

are indicated as measured by SAM (left) and APXS 

(right). 

 

NO, O2 – Evolved NO and O2 indicated nitrate and 

(per)chlorate, respectively, in the Gale sediments (Figs. 
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Mg-SO4 
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3,4). Nitrate and (per)chlorate contents were variable 

between CH and BK and were mostly lost above OU 

(Figs. 3,4). The drop in nitrate and (per)chlorate con-

tents coincide with the hematite and CaSO4 increases 

and significant magnetite decrease (Fig. 1). Either the 

source sediments were low in nitrate and (per)chlorate 

or post-depositional processes leached the soluble ni-

trate and (per)chlorate from the sediments. CaSO4-filled 

fractures in the OU to HF sediments suggest post-depo-

sitional CaSO4 fluids could have leached nitrate and 

(per)chlorate away. However, leaching is difficult to 

reconcile when total Cl (0.5 - 1 wt.%) possibly consist-

ing of soluble chlorides occurs in these samples. 

 
Fig. 3. Evolved NO detected by SAM-EGA. wt. % NO3

- 

indicated at right 

 

CO2 – CO2 releases were consistent with organic-C over 

the entire SAM temperature range (Fig. 5). Carboxylic 

acids from meteoritic or magmatic materials are candi-

date sources of the CO2-carbon. [4,5,6]. Evolved CO2 

above 450°C could also be attributed to carbonate espe-

cially in TP and QL. Coexisting jarosite and carbonate 

(if present) suggest TP and QL were exposed to variable 

acidic and alkaline solutions. Total carbon abundance 

(Fig. 5) did not trend with phyllosilicate or any other 

mineralogical content (Fig. 1).  

Conclusions: The Murray formation mudstones have 

been exposed to complex geochemical conditions of 

varying redox and pH. One possible scenario was that: 

1) All Murray mudstones were deposited under varying 

reducing/oxidizing conditions that caused the precipita-

tion of magnetite/hematite and Fe/Mg-S phases. 2) Up-

per Murray mudstones (OU to HF) were exposed to 

post-depositional oxidizing fluids that promoted hema-

tite and increased phyllosilicate formation, transfor-

mation of most magnetite to hematite, and leaching of 

soluble (per)chlorate and most nitrate. Geochemical 

  
Fig. 4. Evolved O2 detected by SAM-EGA. wt. % ClO4

- 

indicated at right. 

 

 
Fig. 5. Evolved CO2 detected by SAM-EGA. gC/g in-

dicated on right. 

 

fluids with varying pH could be indicated by the co-oc-

currence of jarosite and possibly carbonate in some 

Murray materials. The total C content did not trend with 

the observed Murray mineralogical variation, suggest-

ing that geochemical conditions (pH, redox) reflected in 

the mineralogy may not affect total C deposited in Gale 

sediments. Source sediments may control total C con-

tent in Gale Crater.  
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